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Abstract: Hypoxia is a common biological condition in many malignant solid tumors that plays an
imperative role in regulating tumor growth and impacting the treatment’s therapeutic effect. There-
fore, the hypoxia assessment is of great significance in predicting tumor development and evaluating
its prognosis. Among the plenty of existing tumor diagnosis techniques, magnetic resonance imaging
(MRI) offers certain distinctive features, such as being free of ionizing radiation and providing images
with a high spatial resolution. In this study, we develop a fluorescent traceable and hypoxia-sensitive
T1-weighted MRI probe (Fe3O4-Met-Cy5.5) via conjugating notable hypoxia-sensitive metronidazole
moiety and Cy5.5 dye with ultrasmall iron oxide (Fe3O4) nanoparticles. The results of in vitro and
in vivo experiments show that Fe3O4-Met-Cy5.5 has excellent performance in relaxivity, biocompati-
bility, and hypoxia specificity. More importantly, the obvious signal enhancement in hypoxic areas
indicates that the probe has great feasibility for sensing tumor hypoxia via T1-weighted MRI. These
promising results may unlock the potential of Fe3O4 nanoparticles as T1-weighted contrast agents for
the development of clinical hypoxia probes.

Keywords: tumor hypoxia; ultrasmall iron oxide nanoparticles; magnetic resonance imaging; metron-
idazole

1. Introduction

The tumor microenvironment (TME), closely related to the tumor growth and metas-
tasis [1], is often a starting point for the study of tumor development and pathological
processes. During the expansion of a tumor, the tumorous tissues located far from the blood
vessels might encounter a state of oxygen deficiency (i.e., hypoxia) as a consequence of the
imbalance between the oxygen supply capacity and the consumption rate [2,3]. Hypoxia is
an important characteristic of many pathological parameters (low pH, abnormal expression
of enzymes) in TME, which greatly affects the prognosis and treatment of tumors [4–6].
The incidence of hypoxia in most advanced solid tumors and its capability to activate
hypoxia-inducible factor-1α (HIF-1α) have been previously confirmed [7,8]. The factor
can promote the invasion and metastasis of tumor cells, as well as a greater tolerance to
radio- and chemotherapy [9,10]. Therefore, predicting tumor hypoxia and visualizing its
distribution is of great significance for the formulation of tumor treatment protocols and
the evaluation of prognosis.

Compared with the traditional oxygen electrode method [11,12], the molecular imag-
ing technique, which can detect tumor hypoxia, is becoming more prevalent recently for its
non-invasive and real-time imaging characteristics [13–15]. In particular, optical imaging
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and nuclear medicine imaging have contributed a lot to this research. In optical imaging,
hypoxia fluorescent probes mostly connect dye molecules with sensitive moieties, such
as nitroimidazole and azobenzene, to quench the original fluorescence until the structure
of the sensitive moieties is changed by related reductase under hypoxic conditions [16].
Apart from these probes, it has been found that some phosphorescence dyes, such as the
ruthenium(II) and iridium(III) complexes, can also achieve the accurate sensing of O2
content, according to the quenching degree of phosphorescence under different oxygen
concentrations [17–19]. For example, our team previously reported a ratiometric O2 sens-
ing probe, which innovatively encapsulated the common hydrophobic oxygen-sensitive
iridium(III) complex into β-cyclodextrin and then combined it with the oxygen-insensitive
Cyanine7 dye [20]. This kind of design not only improves the water solubility and oxygen
sensing sensitivity of the iridium(III) complex, but also successfully realizes the rapid
and quantitative visualization of hypoxic regions in vivo. Although optical imaging has
superiority in resolution and sensitivity, its spatial resolution and signal intensity declines
significantly with the increase of tissue depth, thus leading to limitations in deeper tissue
imaging of tumors.

However, nuclear medicine imaging is free of the aforementioned limitations and
displays a greater advantage in clinical application. The most deserved to be mentioned
is 18F-fluoromisonidazole (18F-FMISO), which is widely used in clinical hypoxic research.
It can evaluate the degree of tumor hypoxia, according to the relative signal enhance-
ment caused by the selective accumulation in hypoxic cells [21]. Then, based on the
mechanism of 18F-FMISO, the researchers developed a series of improved probes, such
as 18F-fluoroazomycinarabinofuranoside (18F-FAZA) and 18F-3-fluoro-2-(4-((2-nitro-1H-
imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)propan-1-ol (18F-HX4)) [22,23], which not only
increase the water solubility, but also enhance the clearance rate and signal contrast. Despite
this, nuclear medicine imaging is limited by low spatial resolution, thus leading to a lack of
clarity in the distribution of tumor hypoxia.

Compared with the aforementioned methods, magnetic resonance imaging (MRI) has
a better promising future in clearly depicting the hypoxia distribution because of its high
spatial resolution and lack of limitation in tissue depth [24]. At present, Fe3O4 nanoparticles
have been developed as an alternative MRI contrast agent with excellent magnetic proper-
ties and biocompatibility [25] and have gradually become an outstanding carrier for the
construction of tumor hypoxia probes in recent years. For instance, Filippi et al. developed
a hypoxia-specific T2-weighted MRI probe by conjugating 10 nm-sized Fe3O4 nanoparti-
cles with the oxygen-sensitive metronidazole ligands and demonstrated its capability of
selective accumulation into the hypoxic two-dimensional (2D) and three-dimensional (3D)
cell models [26]. In addition, Zhou et al. constructed a hypoxia-triggered T2-weighted
MRI probe by simultaneously modifying nitroimidazole and cysteine to the surface of
Fe3O4 nanoparticles [27]. Under the hypoxic environment, the bioreductions of the ni-
tro group can subsequently form reductive adducts with the thiol group of cysteine on
Fe3O4 nanoparticles, thus cross-linking the nanoparticles to form larger assemblies and
amplifying the T2-weighted MRI signal for the tumor interior region. Although these
Fe3O4-based hypoxia probes exhibited splendid hypoxia selectivity, this mode highlights
the lesion areas by a signal decline (darker images), which has been reported to affect the
identification of tumors from internal bleeding, calcification, and metal deposition [28,29].
On the contrary, T1-weighted MRI is a way to brighten the regions of interest by an increase
in signal (using T1-weighted images) intensity, which is intrinsically more sensitive than a
decrease in signal (using T2-weighted images) intensity presented by T2-weighted MRI for
reducing the impact on diagnostic accuracy. From this point of view, T1-weighted magnetic
resonance imaging will have a better application prospect in the field of tumor hypoxia
detection.

According to the report, Fe3O4 nanoparticles can also be used as T1-weighted contrast
agents when the core diameter is less than 5 nm [30–33]. Herein, to realize the T1-weighted
MRI of tumor hypoxia, as shown in Scheme 1, ultrasmall PEGylated Fe3O4 nanoparticles
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were synthesized and further conjugated with metronidazole and Cy5.5 fluorescent dye to
construct a T1-weighted MRI nanoprobe (Fe3O4-Met-Cy5.5). Firstly, the nanoprobes reach
the tumor tissue through the endothelial permeability and retention effect (EPR). Then,
the nitro groups on the surface of nanoprobes will undergo a series of reduction reactions
to form amino compounds under the action of reductase in hypoxic cells [34,35]. Finally,
the compounds would eventually form bonds with macromolecular substances existing in
the hypoxic regions [36], producing specific retention in hypoxia regions. Both the cellular
evaluation and tumor imaging studies have proven that the Fe3O4-Met-Cy5.5 probe has
excellent hypoxia sensitivity and can achieve a great T1-weighted MRI of hypoxic tumors
in vivo.
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Scheme 1. The illustration of the Fe3O4-Met-Cy5.5 nanoprobe for in vivo T1-weighted MRI and the
mechanism of metronidazole trapped in hypoxic regions.

2. Materials and Methods
2.1. Materials

Iron(III) acetylacetonate (Fe(acac)3), oleic acid, oleylamine, cyclohexane, N-
hydroxysuccinimide (NHS), D-cysteine hydrochloride monohydrate (Cys), and Cy5.5-
NHS ester were purchased from Aladdin. Tetrahydrofuran (THF) and acetone was pur-
chased from Sinopharm Chemical Reagent Co., LTD., Shanghai, China. The 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide hydrochloride (EDC) was purchased from Energy
Chemical. Polyethylene glycol (Mw ≈ 2000 Da) with a diphosphate group at one end and
a maleimide group at the other end, denoted as DP-PEG-Mal, was provided by Suzhou
Xinying Biomedical Technology Co., LTD., Suzhou, China. Boc-Cys(Trt)-OH was pur-
chased from Shanghai Maclin Biochemical Technology Co., LTD., Shanghai, China. The
1-(2-Aminoethyl)-2-methyl-5-nitroimidazoledihydrochloride was purchased from Acros
Organics. Triethylsilane was purchased from TCI. Dulbecco’s modified eagle medium
(DMEM) and fetal bovine serum (FBS) were purchased from HyClone. Hoechst 33342
reagent was purchased from Beyotime Biotech. HIF-1α mouse monoclonal antibody was
purchased from Affinity.

2.2. Cells and Animals

Human breast cancer cells (MCF-7) were cultured in high glucose DMEM medium
supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin solution. The
normoxic MCF-7 cells were cultured under the condition of 37 ◦C, 21% O2, 5% CO2, and
95% humid air in a carbon dioxide incubator. The hypoxic cells were cultured in a three-gas



Molecules 2022, 27, 6929 4 of 13

incubator with low oxygen concentration. SPF nude mice (female, 4–5 weeks, weight
of 18~20 g) were purchased from Changzhou Cavens Experimental Animal Co., Ltd.,
Changzhou, China. All animal experiments were approved by the Laboratory Animal
Center of Soochow University. The subcutaneous tumor models were established by
injecting MCF-7 cells (4 × 106 each) into the dorsal area near the right hind limb of each
mouse.

2.3. Synthesis of Hypoxia-Sensitive Ligand (Met)

Boc-Cys(Trt)-OH (231.8 mg, 0.5 mmol), EDC (134.2 mg, 0.7 mmol), and NHS
(135.8 mg, 1.18 mmol) were dissolved in CH2Cl2 (5 mL), stirring for 20 min at room tem-
perature under the atmosphere of nitrogen. The mixture solution of dimethylformamide
(DMF) and N-diisopropylethylamine (DIPEA) containing 1-(2-Aminoethyl)-2-methyl-
5-nitroimidazoledihydrochloride (170 mg, 0.65 mmol) was slowly injected into the above
solution by a syringe, under the condition of ice bath, and stirred at room temperature
overnight. After the reaction, CH2Cl2 and DMF were evaporated by decompression rotation
and freeze-dried to fully remove the liquid from the system. The yellow solid was extracted
with saturated sodium bicarbonate solution three times. The organic phase was collected
and dried with anhydrous sodium sulfate. After filtering and evaporating, the compound
BM was further purified by Elite P3500 semi-preparative liquid chromatographic system.

The purified product BM (120 mg, 0.195 mmol) was dissolved in CH2Cl2 and dripped
with trifluoroacetic acid (TFA) and triethylsilane. The final product, Met, was purified by
Elite P3500 semi-preparative liquid chromatographic system after the solvent was removed
under reduced pressure.

2.4. Synthesis of Ultrasmall Fe3O4 Nanoparticles

Ultrasmall iron oxide nanoparticles (Fe3O4) were prepared according to a previous
report on a flow synthesis system [37]. Typically, Fe (acac)3 (7.1 g, 20 mmol), oleic acid
(38.7 g, 137 mmol), and oleylamine (36.6 g, 137 mmol) were dissolved in 0.9 L methylben-
zene to prepare a flow reaction solution. The flowing reaction liquid was pumped into the
tubular reactor by a high-pressure constant current pump. And the flow rate, temperature,
and residence time were 30 mL min−1, 270 ◦C, and 6 min. After that, the solution was
cooled to room temperature and collected in sample bottles. Then, the crude product
was precipitated with acetone and dissolved with cyclohexane for two cycles. Finally, the
precipitation was redispersed in cyclohexane for further experiments.

2.5. Ligand Exchange to Prepare PEGylated Fe3O4-Mal Nanoparticles

A total of 100 mg DP-PEG-Mal was dissolved in 4 mL THF containing 10 mg Fe3O4
nanoparticles and stirred at 60 ◦C for 24 h. Then, the solution was precipitated by adding
cyclohexane and dissolved in THF afterward. After 2 cycles of purification, the precipita-
tion was dried under a vacuum and dispersed in water. The aqueous solution was then
ultrafiltrated four times with a 30 kDa MWCO centrifugal filter.

2.6. Preparation of Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5 Nanoprobes

Met (0.25 mg, 0.9 µmol) dissolving in DMSO or Cys (0.16 mg, 0.9 µmol) dissolving in
water were mixed, respectively, with the aqueous solution of tris(2-carboxyethyl) phosphine
(80 µL, 4 µmol). After being adjusted to neutrality by HEPES buffer (pH = 7.4, 1 M), the
mixture was added to Fe3O4-Mal (containing 2.5 mg Fe) and oscillated for 12 h to obtain
Fe3O4-Met or Fe3O4-Cys nanoprobes.

Cy5.5-NHS (0.13 mg, 0.18 µmol), dissolved in DMSO (65 µL), was added to Fe3O4-Met
or Fe3O4-Cys (containing 2.5 mg Fe) and stirred for 12 h. The final product was dialyzed
with Dialysis bags (MWCO: 12,000-14,000 Da) for 3 days and concentrated by a 30 kDa
MWCO centrifugal filter.
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2.7. Characterizations

Proton nuclear magnetic resonance (1H NMR) spectra was obtained from Bruker
Advance NEO 400 MHz. The morphology and size of the nanoparticles were taken with a
high-resolution transmission electron microscope (Tenia G2 F20, FEI company, Hillsboro,
CA, USA) at an acceleration voltage of 200 kV. The iron concentration was obtained by the
1,10-phenanthroline spectrophotometric method, after the resulting nanoparticles were
eroded with the concentrated hydrochloric acid. The hydrodynamic size and zeta poten-
tial of nanoprobes were measured by Malvern Zetasizer Nano ZS90. Ultraviolet–visible
absorption spectra were performed on the Persee dual-beam UV–Vis spectrophotometer.
Fluorescence spectra were recorded by a steady-state/lifetime spectrofluorometer (FLS 980,
Edinburgh Instruments, Livingston, Scotland). The relaxivity measurements were obtained
by a 3 T animal MRI scanner (MRS 3000, MR Solution, Guildford, UK).

3. Results and Discussion
3.1. Synthesis and Characterization of Hypoxia-Sensitive Ligand

Due to the unique hypoxia-sensitive characteristics, metronidazole derivatives have been
commonly used for hypoxia-selective prodrugs and imaging probes [38–40]. Herein, through
an amidation reaction of Boc-Cys(Trt)-OH and metronidazole, followed by a deprotection
reaction, 2-amino-3-mercapto-N-(2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl)propanamide
(Met)) was achieved as the hypoxia-sensitive ligand. The detailed synthesis route, 1H
NMR, and mass spectrum of the resulting product are given in the Supporting Information
(Scheme S1, Figures S1 and S2, respectively). Moreover, Cys which lacks specificity toward
hypoxia, was used to serve as the control ligand.

3.2. Construction and Characterization of Hypoxia-Sensitive MRI Nanoprobes

The transmission electron microscopy (TEM) images and the corresponding particle
size distribution of ultrasmall Fe3O4 nanoparticles were provided in Figure S3a in the
Supporting Information. Polyethylene glycol (PEG) polymers, bearing a diphosphate group
at one end and maleimide at the other, were employed to render the prepared nanoparticles
hydrophilic by replacing the native organic ligands of the hydrophobic Fe3O4 nanoparticles.
As shown in Figure 1a,b, the resulting maleimide functionalized nanoparticles (Fe3O4-Mal)
exhibited a uniform spherical shape, with a mean size of 3.6 ± 0.3 nm. Subsequently, the
Met or Cys ligands was conjugated to the Fe3O4-Mal nanoparticles by a click reaction
taking place between the maleimide groups of nanoparticles and the thiol moieties of the
ligands. Finally, the surfaces of the resulting products were further modified by Cy5.5-NHS
ester to construct the final hypoxia-sensitive and non-sensitive nanoprobes, termed Fe3O4-
Met-Cy5.5 and Fe3O4-Cys-Cy5.5, respectively (Scheme S2). As displayed in Figure S3b,c,
the surface modification processes did not alert the morphology and size distribution
of the original nanoparticles, such that spherical particles with the size of 3.7 ± 0.4 nm
were prepared in both cases. The dynamic light scattering (DLS) measurement results
given in Figure 1c show that both Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5 exhibit narrow
hydrodynamic size distribution profiles. However, the hydrodynamic size (Figure 1c)
and zeta potential value (Figure 1d) of Fe3O4-Met-Cy5.5 were slightly higher than those
of Fe3O4-Cys-Cy5.5, which might be caused by the modification of the metronidazole
groups. Anyway, the emergence of Cy5.5 characteristic absorption and emission peaks
in the corresponding spectra (Figure 1e,f) of the resultant nanoprobes confirmed that
two ligands and the dye molecules have successfully conjugated to the surface of the
nanoprobes. Through ultraviolet–visible spectroscopy, the number of Cy5.5 moieties was
estimated to be 4 on each nanoparticle.

To evaluate the colloidal stability, the prepared nanoprobes were incubated in water
or PBS for up to 120 h, and the hydrodynamic sizes were monitored by DLS. The results
shown in Figures 1g and S4a exhibited negligible change, which translated into the perfect
colloidal stability of the nanoprobes. Subsequently, the relaxation measurements were
performed under 3 T to assess the imaging performances of the prepared nanoprobes. As
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shown in Figure S4b,c, increasing the concentration caused the signal intensity to increase
under T1-weighted mode and decrease under T2-weighted mode, respectively. Through
linear regression fitting of the experimental relaxation rates, as shown in Figure 1h, the
longitudinal relaxivity (r1) of Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5 were calculated to
be 5.6 mM−1 s−1 and 5.5 mM−1 s−1, respectively. Similarly, as illustrated in Figure 1i, the
transverse relaxivity (r2) values of 31.0 mM−1 s−1 and 27.0 mM−1 s−1 were measured for
the hypoxia sensitive and non-sensitive probes, respectively. The high r1 value and the
low r2/r1 ratio suggested that both of the prepared nanoprobes exhibited great relaxation
performance and can be employed as promising contrast agents for T1-weighted MRI.
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Figure 1. (a) TEM image and (b) size distribution of PEGylated Fe3O4-Mal nanoparticles. (c) Hydro-
dynamic size distribution and (d) zeta potential values of Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5.
(e) Ultraviolet–visible absorption spectra of Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5, with a Fe con-
centration of 50 µg mL−1. (f) Fluorescence spectra of Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5, with a
Fe concentration of 50 µg mL−1 acquired at 705 nm upon excitation at 635 nm. (g) The hydrodynamic
size variation of Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5 incubated in PBS for 120 h. Linear regression
fitting of the longitudinal (h) and transverse (i) relaxivities of Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5
for extracting r1 and r2.

3.3. In Vitro Specificity and Cytotoxicity of Hypoxia-Sensitive MRI Nanoprobes

To investigate the efficacy of the prepared nanoprobes in detecting hypoxic environ-
ments, MCF-7 cells with different hypoxic states were first obtained by incubating the
cells under different oxygen concentrations for 12 h. Then, the expression of HIF-1α was
evaluated by Western Blot assays. As shown in Figure 2a,b, it was verified that the cells
cultured in 3% and 1% O2 could establish hypoxic cell models for further experiments.
Anyway, the protein expression values for the cells cultured under 1% and 3% O2 were 2.9
and 2.2 times higher than that of 21%, respectively.
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Figure 2. (a) Expression of HIF-1α protein in MCF-7 cells incubated under the oxygen concentrations
of 1%, 3%, and 21% for 12 h. (b) Semi-quantitative analysis of relative expression of HIF-1α protein at
different oxygen concentrations. Confocal fluorescence images of MCF-7 cells after incubation with
Fe3O4-Met-Cy5.5 (c) or Fe3O4-Cys-Cy5.5 (d) at different oxygen concentrations (scale bar represents
50 µm).

After demonstrating the different hypoxic states, the Fe3O4-Met-Cy5.5 and Fe3O4-Cys-
Cy5.5 nanoprobes were incubated with hypoxic and normoxic cell models and observed
by a confocal laser scanning microscope. Comparing the cells incubated with the two
nanoprobes at the same hypoxia level (1% or 3% O2), the cellular accumulation of Fe3O4-
Met-Cy5.5 was much higher than that of Fe3O4-Cys-Cy5.5 (Figure 2c,d). On the other
hand, evaluating the cells incubated under three oxygen concentrations revealed that the
cellular uptake of Fe3O4-Met-Cy5.5 increased in response to the decrease in the oxygen
level. On the contrary, no apparent variation in cellular accumulation could be identified
for the cells incubated with Fe3O4-Cys-Cy5.5. Particularly, as shown in Figure S5, the
average fluorescence intensity arising from the Fe3O4-Met-Cy5.5 group under the oxygen
concentrations of 1% and 3% were 2.8 and 1.6 times higher than that under 21% O2,
respectively. It was noticed that the fluorescence enhancement of the Fe3O4-Met-Cy5.5
group was well-consistent with the increase of its HIF-1α expression under a more severe
state of hypoxia (1% O2). To further prove that the Fe3O4-Met-Cy5.5 probe has more uptake
in a hypoxic environment, the nanoprobes were incubated with cells treated with hypoxia
(1% O2) or normoxia (21% O2) for 12 h, and then followed by Prussian blue staining.
As shown in Figure S6, more blue substances appeared in the cells of Fe3O4-Met-Cy5.5
group under 1% O2. These observations further confirmed that the Fe3O4-Met-Cy5.5 probe
is sensitive to hypoxia cells, especially under severe hypoxia. The main reason is the
accumulation and retention effect caused by the combination of metronidazole moieties
and macromolecules in the hypoxic environment.

In comparison with the 2D cell model, the 3D multicellular spheres, which are better
in line with the growth state of living cells in vivo, have been widely used in drug eval-
uation [41,42]. In addition, it has been reported that, for the multicellular spheres larger
than 200 µm in diameter, the conditions of hypoxia and necrosis might be induced due
to the lack of nutrition supply [43]. Herein, the spheres with approximate diameters of
300 µm were selected to be incubated with Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5 for
6 h. The representative slice images of multicellular spheres, obtained by a confocal laser
scanning microscope, are given in Figure 3a, together with the quantified fluorescence
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intensity results shown in Figure 3b. It is easily noticeable that the fluorescence signal of
the multicellular spheres incubated with Fe3O4-Met-Cy5.5 was stronger than that of the
control group, especially in hypoxic inner areas. Furthermore, the intensity spectra close to
the interior (100 to 200 µm) were integrated. It was found that the fluorescence intensity of
the Fe3O4-Met-Cy5.5 group was 2.1 times higher than that of Fe3O4-Cys-Cy5.5. The results
proved that the Fe3O4-Met-Cy5.5 probe also had a superior ability to be retained in the
hypoxic regions of 3D multicellular spheres.
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Figure 3. (a) The bright field and fluorescence images of multicellular spheres in the profile of 50 µm
from the maximum cross-section (scale bar represents 100 µm). (b) The relative fluorescence intensity
distribution, along with the white line drawn on the fluorescence images. MCF-7 cells viabilities by
CCK-8 assay after incubating with varied concentrations of Fe3O4-Cys-Cy5.5 or Fe3O4-Met-Cy5.5
under 21% (c) and 1% O2 (d).

To evaluate the cytotoxicity of Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5, the standard
cell counting kit 8 (CCK-8) assays were performed based on the proliferation of MCF-7
cells under 21% and 1% O2. As depicted in Figure 3c,d, the viability values of the cells
incubated with nanoprobes containing up to 200 µg mL−1 of Fe were higher than 80%,
regardless of the O2 concentration. These results suggested that both nanoprobes exhibited
low cytotoxicity under both normoxic and hypoxic conditions and can be applied to in vivo
imaging experiments.

3.4. In Vivo T1-Weighted MRI of Tumors

Based on the excellent hypoxia sensitivity in vitro, the nanoprobes were further intra-
venously injected into MCF-7 tumor-bearing mice (5.6 mg Fe kg−1 bodyweight) to explore
the ability to detect hypoxia in vivo via MRI. The T1-weighted MR images at different
time points before (pre) and post-injection (2 h, 4 h, 6 h, 12 h, 24 h) were collected by 3 T
MRI apparatus. The results in Figure 4a displayed an obvious brightening trend in the
signal arising from the tumor site for both groups and up to 6 h post-injection. However,
from 6 to 24 h after injection, a decreasing signal tendency was identified for both groups.
Furthermore, the normalized ratio of signal intensity arising from the tumor site to that of
normal muscle (T/N) in Figures 4a and S7 clearly exhibited that Fe3O4-Met-Cy5.5 could
provide a higher contrast than that of Fe3O4-Cys-Cy5.5 (1.39 vs. 1.18 at 6 h post-injection).
Anyway, the trend of the MRI signals in the two groups had statistically significant differ-
ences at 2, 4, 6, and 12 h post-injection (Figure S8a). Based on the above results, the ability
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of Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5 to target the tumors through the EPR effect can
presumably be considered similar, due to their similar sizes and surface modifications.
Therefore, this higher tumor contrast was assumed to originate from the hypoxic condition
of the tumor, which might lie in the specific accumulation of metronidazole moieties. This
conjecture is reasonable as the central area of the tumor site in Figure 4a, which preferred a
hypoxic state, due to the limited oxygen supply capacity, and was visibly brighter than the
surrounding region of the tumor treated with Fe3O4-Met-Cy5.5. To verify this assumption,
the tumors were harvested and subjected to H&E and immunofluorescence staining of the
HIF-1α antibody. As illustrated in Figure 4b,c, areas of tumor necrosis in H&E staining and
hypoxic regions in HIF-1α staining were identified for both groups. More importantly, the
distribution of the red fluorescence of HIF-1α, given in Figure 4b, was generally consistent
with the brightening area of Fe3O4-Met-Cy5.5-treated group, verifying that our previous
assumption was valid. In addition, Prussian blue staining of the hypoxic regions from the
adjacent slices showed that both nanoprobes still had retention in the tumor regions after
injection for 24 h (Figure 4d,e).
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Figure 4. (a) T1-weighted MRI of tumor-bearing mice within 24 h, before and after injection with
Fe3O4-Met-Cy5.5 or Fe3O4-Cys-Cy5.5. H&E staining (left) and immunofluorescence staining (right)
for tumors of mice injected with Fe3O4-Met-Cy5.5 (b) or Fe3O4-Cys-Cy5.5 (c) (scale bars represent
1000 µm). Prussian blue staining of hypoxic area (dashed area on immunofluorescence staining
images) in the tumors of mice treated with Fe3O4-Met-Cy5.5 (d) or Fe3O4-Cys-Cy5.5 (e) (scale bars
represent 200 µm).
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As the hypoxic areas in tumors may change slightly over time, the MRI was scanned
again with the termination at the highest signal value (6 h) to further explore the ability
of Fe3O4-Met-Cy5.5 to visualize hypoxia distribution. As expected, we found a highly
brightening contrast again in the central region of the tumor treated with Fe3O4-Met-Cy5.5
(Figure 5a), and its signal value at 6 h was 1.40-fold higher than that of Pre (Figure 5b).
However, the brightening effect was much weaker in the control group, and its signal value
was only a 1.14-fold enhancement. As shown in Figure 5c,d, there were obvious positive
areas in the center of the tumor, and the positive areas in the Fe3O4-Met-Cy5.5 group were
well-consistent with the signal-enhanced regions in the MRI images at 6 h. In addition,
the expression of HIF-1α in the central areas was significantly stronger than that of the
surrounding less-hypoxic areas (Figure S8b). The above results indicated that the Fe3O4-Met-
Cy5.5 probe can achieve T1-weighted MRI of hypoxic areas in tumors. Moreover, Prussian
blue staining results demonstrated that the number of blue spots for the tumor treated with
Fe3O4-Met-Cy5.5 was significantly larger than that of the control group (Figure 5e,f), further
proving the higher accumulation and retention of Fe3O4-Met-Cy5.5 in hypoxic tumors.
Anyway, the H&E staining (Figure S9) of both groups showed no obvious pathological
symptoms of inflammation, cell edema, and necrosis in the tissues of tumor-bearing mice,
indicating the biosafety of the two nanoprobes at the dosage of 5.6 mg Fe kg−1.
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Cy5.5 or Fe3O4-Cys-Cy5.5. (b) The MRI signals at the time before (pre) and after (6 h) injection of
Fe3O4-Met-Cy5.5 or Fe3O4-Cys-Cy5.5. H&E staining (left) and immunofluorescence staining (right)
for tumors of mice injected with Fe3O4-Met-Cy5.5 (c) or Fe3O4-Cys-Cy5.5 (d) (scale bars represent
1000 µm). Prussian blue staining of hypoxic area (dashed area on immunofluorescence staining
images) in the tumors of mice treated with Fe3O4-Met-Cy5.5 (e) or Fe3O4-Cys-Cy5.5 (f) (scale bars
represent 200 µm).

4. Conclusions

In conclusion, we have successfully constructed an ultrasmall Fe3O4-based T1-weighted
MRI probe with outstanding relaxivity performance, biocompatibility, and hypoxia speci-
ficity. The in vitro cell experiments showed that the accumulation of Fe3O4-Met-Cy5.5
under hypoxic condition was consistent with the increase of HIF-1α expression level,
which proved the excellent hypoxia sensitivity of the resultant nanoprobes. After being
intravenously injected into the tumor-bearing mice model, the significantly enhanced
signal contrast in the tumors’ interior regions confirmed the hypoxia sensitivity of the
Fe3O4-Met-Cy5.5 in vivo. Anyway, the comparison between the brightening MRI and
hypoxia immunofluorescence images further demonstrated the feasibility of the resultant
nanoprobes for depicting the hypoxia area in tumors. Therefore, this work not only exhibits
the potential of ultrasmall Fe3O4 in tumor diagnostic imaging as T1-weighted MRI contrast
agents but also provides a valuable reference for hypoxia imaging probes in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27206929/s1, Scheme S1: Synthetic route of hypoxia-
sensitive ligand (Met), Scheme S2: Synthetic route of Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5, Figure S1:
1H NMR spectrum of hypoxia-sensitive ligand (Met), Figure S2: Mass spectrum of hypoxia-sensitive
ligand (Met), Figure S3: TEM images and the size distributions of Fe3O4 (a), Fe3O4-Met-Cy5.5 (b), and
Fe3O4-Cys-Cy5.5 (c) nanoparticles, Figure S4: The evaluation of colloid stability for Fe3O4-Met-Cy5.5
and Fe3O4-Cys-Cy5.5 stored in water for 120 h (a). T1-weighted (b) and T2-weighted (c) MR images
of the Fe3O4-Met-Cy5.5 and Fe3O4-Cys-Cy5.5 at different Fe concentrations (0, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5 mM), Figure S5: Semi-quantitative analysis of MCF-7 cells fluorescence imaging under three
oxygen concentrations, Figure S6: Prussian blue staining of MCF-7cells incubated with Fe3O4-Met-
Cy5.5 or Fe3O4-Cys-Cy5.5 probe at different oxygen concentrations for 12 h (scale bar represents
10 µm). Figure S7: T1-weighted MRI of two additional tumor-bearing mice for each group within
24 h, before and after injection with Fe3O4-Met-Cy5.5 or Fe3O4-Cys-Cy5.5, Figure S8: (a) The trend
of MRI signal at different time points in tumors injected with Fe3O4-Met-Cy5.5 or Fe3O4-Cys-Cy5.5.
(b) Semi-quantitative analysis of HIF-1α expression of the less-hypoxic and hypoxic regions in tumors
treated with Fe3O4-Met-Cy5.5 or Fe3O4-Cys-Cy5.5, Figure S9: H&E staining of organ tissue (heart,
liver, spleen, lung, and kidney) from mice harvested at 24 h after the injection of Fe3O4-Met-Cy5.5 or
Fe3O4-Cys-Cy5.5 (scale bar represents 100 µm). Ref. [44] appears in Supplementary Materials.
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